martes, 27 de mayo de 2014

PRESENCIA DE LA PARÁBOLA EN LA NATURALEZA

 
INTEGRANTES: GARCÍA ORTIZ GLICERIA, GUILLERMO REYES KARLA, MARCIAL ROSALES GINA, OSTOLAZA AGUIRRE HAROLD, PONCE LIMAY CRISTHIE, TELLO MANTILLA LUIS
 
PRESENCIA DE LA PARÁBOLA EN LA NATURALEZA

Aquí algunos ejemplos:

-En el juego mecánico del martillo
-Al jugar tennis
-Al lanzar una piedra al aire
-Al columpiarse
-El agua que sale de las fuentes (el paseo de las aguas)
-Cuando un cuerpo es lanzado por un cañon
-Trayectoria de una bola
-Las siglas de Mc Donalds
-Al patear la pelota al arco en un partido de futbol
-En un partido de beísbol al lanzar la pelota
-Al encestar la pelota en un juego de básquet
-El arco de los puentes
-El arcoriris
-Al momento de una pirueta de un joven skateboard
-Al momento del salto largo en las olimpiadas

-

martes, 20 de mayo de 2014

LA HISTORIA DE LA MATEMATICA

LA HISTORIA DE LA MATEMATICA

INICIOS DE LA MATEMATICA
¿Cuándo nació la matemática? Al ser un producto del intelecto humano en el deseo de entender y predecir la realidad, la matemática está asociada en todo momento a cualquier cultura y sociedad.
Es una ciencia que a cumplido 2000 años de edad y aunque actualmente está muy estructurada llevo mucho tiempo para organizarla en el pasado las matemáticas eran conocidas como las ciencias que estudian las magnitudes de los números y sus propiedades en el siglo xix las matemáticas se empezaron como las ciencias  que produce condiciones necesarias, en realidad las matemáticas son tan antiguas como la propia humanidad y la encontramos en los diseños prehistóricos de cerámica tejidos y en las pinturas rupestres los sistemas de cálculo primitivos estaban basados en el uso de los dedos de una o dos manos prestan atención como contaban con cada uno de sus dedos de 1 hasta a10, en los que se separaban entre 5 y 5.

PRE HISTORIA  
Mucho antes de los primeros registros escritos, hay dibujos que indican algún conocimiento de matemáticas elementales y de la medida del tiempo basada en las estrellas. Por ejemplo, los paleontólogos han descubierto rocas de ocre en una caverna de Sudáfrica de aproximadamente 70.000 años de antigüedad, que están adornados con hendiduras en forma de patrones geométricos. También se descubrieron artefactos prehistóricos en África y Francia, datados entre el 35.000 y el 20.000 a. C., que sugieren intentos iniciales de cuantificar el tiempo.
Hay evidencias de que las mujeres inventaron una forma de llevar la cuenta de su ciclo menstrual: de 28 a 30 marcas en un hueso o piedra, seguidas de una marca distintiva. Más aún, los cazadores y pastores empleaban los conceptos de uno, dosy muchos, así como la idea de ninguno o cero, cuando hablaban de manadas de animales.

PRIMERAS CIVILIZACIONES  
Las primeras matemáticas conocidas en la historia de la India datan del 3000 - 2600 a. C., en la Cultura del Valle del Indo(civilización Harappa) del norte de la India y Pakistán. Esta civilización desarrolló un sistema de medidas y pesas uniforme que usaba el sistema decimal, una sorprendentemente avanzada tecnología con ladrillos para representar razones, calles dispuestas en perfectos ángulos rectos y una serie de formas geométricas y diseños, incluyendo cuboides, barriles, conos, cilindros y diseños de círculos y triángulos concéntricos y secantes

ANTIGUO ORIENTE  (1800 a C – 500 a.c)   
Las matemáticas babilónicas hacen referencia a las matemáticas desarrolladas por la gente de Mesopotamia, el actual Irak, desde los días de los primeros sumerios, hasta el inicio del periodo helenístico. Se llaman matemáticas babilónicas debido al papel central de Babilonia como lugar de estudio, que dejó de existir durante el periodo helenístico. Desde este punto, las matemáticas babilónicas se fundieron con las matemáticas griegas y egipcias para dar lugar a las matemáticas helenísticas. Más tarde, bajo el Imperio árabe, Mesopotamia, especialmente Bagdad, volvió a ser un importante centro de estudio para las matemáticas islámicas.
Las matemáticas babilónicas fueron escritas usando un sistema de numeración sexagesimal (base 60). De ahí se deriva la división de un minuto en 60 segundos y de una hora en 60 minutos, así como la de un círculo en 360 (60 × 6) grados y las subdivisiones sexagesimales de esta unidad de medida de ángulos en minutos y segundos. Los avances babilónicos en matemáticas fueron facilitados por el hecho de que el número 60 tiene muchos divisores. También, a diferencia de los egipcios, griegos y romanos, los babilonios tenían un verdadero sistema de numeración posicional, donde los dígitos escritos a la izquierda representaban valores de orden superior, como en nuestro actual sistema decimal de numeración. Carecía, sin embargo, de un equivalente a la coma decimal y así, el verdadero valor de un símbolo debía deducirse del contexto.

EGIPTO 
Las matemáticas en el Antiguo Egipto se refieren a las matemáticas escritas en las lenguas egipcias. Desde el periodo helenístico, el griego sustituyó al egipcio como el lenguaje escrito de los escolares egipcios y desde ese momento las matemáticas egipcias se fundieron con las griegas y babilónicas para dar lugar a la matemática helénica. El estudio de las matemáticas en Egipto continuó más tarde bajo el influjo árabe como parte de las matemáticas islámicas, cuando el árabe se convirtió en el lenguaje escrito de los escolares egipcios.
El texto matemático más antiguo descubierto es el papiro de Moscú, que data del Imperio Medio de Egipto, hacia el 2000-1800 a. C. Como muchos textos antiguos, consiste en lo que hoy se llaman problemas con palabras o problemas con historia, que tienen la intención aparente de entretener. Se considera que uno de los problemas es de particular importancia porque ofrece un método para encontrar el volumen de un tronco: "Si te dicen: Una pirámide truncada [de base cuadrada] de 6 de altura vertical, por 4 en la base [base inferior] y 2 en lo alto [base superior]. Haces el cuadrado de 4 y resulta 16. Doblas 4 y resulta 8. Haces el cuadrado de 2 y resulta 4. Sumas el 16, el 8 y el 4 y resulta 28. Tomas un tercio de 6 y resulta 2. Tomas 28 dos veces y resulta 56. Mira, es 56. Encontrarás lo correcto."

ANTIGUA INDIA (900 a C – 200 a C)
Los registros más antiguos existentes de la India son los Sulba Sutras(datados de aproximadamente entre el siglo VIII a.C. y II d.C), apéndices de textos religiosos con reglas simples para construir altares de formas diversas, como cuadrados, rectángulos, paralelogramos y otros. Al igual que con Egipto, las preocupaciones por las funciones del templo señala un origen de las matemáticas en rituales religiosos.
Panini (hacia el siglo V a. C.) formuló las reglas de la gramática del sánscrito .Su notación fue similar a la notación matemática moderna y usaba "metarreglas", transformaciones lineales y recursiones.  Pingala (aproximadamente de los siglos III al I a. C.) en su tratado de prosodia, usa un dispositivo correspondiente a un sistema binario de numeración. Su discusión sobre la combinatoria de métricas musicales corresponde a una versión elemental del teorema del binomio.


                                          Numerales brahmi en el siglo I.

GRECIA ANTIGUA (600 a C -300 a C)
Las matemáticas griegas hacen referencia a las matemáticas escritas en griego desde el 600 a. C. hasta el 300 d. C. Los matemáticos griegos vivían en ciudades dispersas a lo largo del Mediterráneo Oriental, desde Italia hasta el Norte de África, pero estaban unidas por un lenguaje y una cultura comunes. Las matemáticas griegas del periodo siguiente a Alejandro Magno se llaman en ocasiones Matemáticas helenísticas.
Las matemáticas griegas eran más sofisticadas que las matemáticas que habían desarrollado las culturas anteriores. Todos los registros que quedan de las matemáticas pre-helenísticas muestran el uso del razonamiento inductivo, esto es, repetidas observaciones usadas para establecer reglas generales. Los matemáticos griegos, por el contrario, usaban el razonamiento deductivo. Los griegos usaron la lógica para deducir conclusiones, o teoremas, a partir de definiciones y axiomas.27La idea de las matemáticas como un entramado de teoremas sustentados en axiomas está explícita en los Elementos de Euclides (hacia el 300 a. C.) Se cree que las matemáticas griegas comenzaron con Tales (hacia 624 a.C – 546 a.C) y Pitágoras (hacia 582 a. C. - 507 a. C.). Aunque el alcance de su influencia puede ser discutido, fueron inspiradas probablemente por las matemáticas egipcias, mesopotámicas e indias. Según la leyenda, Pitágoras viajó a Egipto para aprender matemáticas, geometría y astronomía de los sacerdotes egipcios.
Tales uso la geometría para resolver problemas tales como el cálculo de la altura de las pirámides y la distancia de los barcos desde la orilla. Se atribuye a Pitágoras la primera demostración del teorema que lleva su nombre, aunque el enunciado del teorema tiene una larga historia.

CHINA CLASICA  (500 a C – 1300 d C)
En China, el emperador Qin Shi Huang (Shi Huang-ti) ordenó en el 212 a. C. que todos los libros de fuera del estado de Qin fueran quemados. El mandato no fue obedecido por todo el mundo, pero como consecuencia se conoce muy poco acerca de la matemática en la China ancestral.
Desde la Dinastía Zhou, a partir del 1046 a. C., el libro de matemáticas más antiguo que sobrevivió a la quema fue el I Ching, que usa trigramas y hexagramas para propósitos filosóficos, matemáticos y místicos. Estos objetos matemáticos están compuestos de líneas enteras o divididas llamadas yin (femenino) y yang (masculino), respectivamente (véase Secuencia del Rey Wen).
La obra más antigua sobre geometría en China viene de canon filosófico mohista, hacia el 330 a. C., recopilado por los acólitos de Mozi (470-390 a.c.). El Mo Jing describió varios aspectos de muchos campos relacionados con la física así como proporcionó una pequeña dosis de matemáticas.
Los chinos también hicieron uso de diagramas combinatorios complejos conocidos como cuadrado mágico y círculo mágico, descritos en tiempos ancestrales y perfeccionados por Yang Hui (1238–1398 d. C.).
Zu Chongzhi (siglo V) de las Dinastías del Sur y del Norte calculó el valor de π hasta siete lugares decimales, lo que daba lugar al valor de π más exacto durante casi 1000 años.
Incluso después de que las matemáticas europeas comenzasen a florecer durante el Renacimiento, las matemáticas chinas y europeas mantuvieron tradiciones separadas, con un significativo declive de las chinas, hasta que misioneros jesuitas como Mateo Ricci intercambiaron las ideas matemáticas entre las dos culturas entre los siglos XVI y XVIII.
MATEMATICA DE JAPON     
La matemática que se desarrolla en Japón durante el período Edo (1603 - 1887), es independiente de la matemática occidental; a este período pertenece el matemático Seki Kōwa, de gran influencia por ejemplo, en el desarrollo del wasan (matemática tradicional japonesa), y cuyos descubrimientos (en áreas como el cálculo integral), son casi simultáneos a los matemáticos contemporáneos europeos como Gottfried Leibniz.
La matemática japonesa de este período se inspira de la matemática china
INDIA CLASICA (Hacia 400 a 1600)
Los avances en matemática india posteriores a los Sulba Sutras son los Siddhantas, tratados astronómicos de los siglos IV y V d.C. (período Gupta) que muestran una fuerte influencia helénica. Son significativos en cuanto a que contienen la primera instancia de relaciones trigonométricas basadas en una semi-cuerda, como en trigonometría moderna, en lugar de una cuerda completa, como en la trigonometría ptolemaica. Con una serie de alteraciones y errores de traducción de por medio, las palabras "seno" y "coseno" derivan del sánscrito "jiya" y "kojiya".
El Suria-sidhanta (hacia el año 400) introdujo las funciones trigonométricas deseno, coseno y arco seno y estableció reglas para determinar las trayectorias de los astros que son conformes con sus posiciones actuales en el cielo. Los ciclos cosmológicos explicados en el texto, que eran una copia de trabajos anteriores, correspondían a un año sideral medio de 365.2563627 días, lo que solo es 1,4 segundos mayor que el valor aceptado actualmente de 365.25636305 días. Este trabajo fue traducido del árabe al latín durante la Edad Media

MATEMATICA ISLAMICA (Hacia 800 a 1500)
 Al-Juarismi a menudo es apodado "el padre del álgebra", por sus importantes contribuciones a este campo. Aportó una meticulosa explicación a la solución de ecuaciones de segundo grado con raíces positivas, y fue el primero en enseñar el álgebra en sus formas más elementales. También introdujo el método fundamental de "reducción" y "balance", refiriéndose a la colocación de los términos restados al otro lado de una ecuación, es decir, la cancelación de términos iguales que se encuentran en lados opuestos de una ecuación. Esta operación fue descrita originariamente por Al-Jarismi como al-jabr. Su álgebra no solo consistía "en una serie de problemas sin resolver, sino en una exposición que comienza con las condiciones primitivas que se deben dar en todos los prototipos de ecuaciones posibles mediante una serie de combinaciones, a partir de este momento serán objeto de estudio”.

MATEMATICA OCCIDENTAL  
Matemática medieval en Europa
El desarrollo de las matemáticas durante la edad media es frecuentemente motivada por la creencia en un «orden natural»; Boecio las sitúa dentro del currículo, en el siglo VI, al acuñar el término Quadrivium para el estudio metódico de la aritmética, la geometría, la astronomía y la música

 Renacimiento europeo
Durante el siglo XII, particularmente en Italia y en España, se traducen textos árabes y se redescubren los griegos. Toledo se vuelve un centro cultural y de traducciones; los escolares europeos viajan a España y a Sicilia en busca de literatura científica árabe incluyendo el Compendio de cálculo por compleción y comparación de al-Khwārizmī, y la versión completa de los Elementos de Euclides, traducida a varios idiomas por Adelardo de BathHerman de Carinthia, y Gerardo de Cremona.
Hay un fuerte desarrollo en el área de las matemáticas en el siglo XIV, como la dinámica del movimiento. Thomas Bradwardine propone que la velocidad se incrementa en proporción aritmética como la razón de la fuerza a la resistencia se incrementa en proporción geométrica, y muestra sus resultados con una serie de ejemplos específicos, pues el logaritmo aún no había sido concebido su análisis es un ejemplo de cómo se transfirió la técnica matemática utilizada por al Kindi y Arnau de Vilanova.

La Revolución Científica de los siglos XVII y XVIII
Leonhard Euler por Emanuel Handmann.
Las matemáticas se inclinan sobre aspectos físicos y técnicos. Isaac Newton y Gottfried Leibniz crean el cálculo infinitesimal, con lo que se inaugura la era del Análisis Matemático, la derivada, la integración y las ecuaciones diferenciales.
El universo matemático de comienzos del siglo XVIII está dominado por la figura de Leonard Euler y por sus aportes tanto sobre funciones matemáticas como teoría de números, mientras que Joseph-Louis Lagrange alumbra la segunda mitad del siglo.
El siglo precedente había visto la puesta en escena del cálculo infinitesimal, lo que abría la vía al desarrollo de una nueva disciplina matemática: el análisis algebraico, en el que, a las operaciones clásicas del álgebra, se añaden la diferenciación y la integración. El cálculo infinitesimal se aplica tanto en la física (mecánicamecánica celesteópticacuerdas vibrantes) como en geometría (estudio de curvas y superficies). Leonard Euler, en Calculi différentialis (1755) y en Institutiones calculi integralis (1770), intenta establecer las reglas de utilización de los infinitos pequeños y desarrolla métodos de integración y de resolución de ecuaciones diferenciales

 MATEMATICA MODERNA
Siglo XIX
La historia matemática del siglo XIX es inmensamente rica y fecunda. Demasiado como para ser abarcada en su totalidad dentro de la talla razonable de este artículo; aquí se presentan los puntos sobresalientes de los trabajos llevados a cabo durante este período.
Numerosas teorías nuevas aparecen y se completan trabajos comenzados anteriormente. Domina la cuestión del rigor, como se manifiesta en el «análisis matemático» con los trabajos de Cauchy y la suma de series (la cual reaparece a propósito de la geometría), teoría de funciones y particularmente sobre las bases del cálculo diferencial e integral al punto de desplazar las nociones de infinitamente pequeño que habían tenido notable éxito el siglo pasado. Más aún, el siglo marca el fin del amateurismo matemático: las matemáticas eran consideradas hasta entonces como obra de algunos particulares, en este siglo, se convierten en profesiones de vanguardia. El número de profesionales no deja de crecer y las matemáticas adquieren una importancia nunca antes vista
En este siglo se desarrollan dos formas de geometría no euclidiana, en las que el postulado de las paralelas de la geometría euclídea ya no es válido. El matemático ruso Nikolai Ivanovich  Lobachevsky y su rival, el matemático húngaro János Bolyai, independientemente definen y estudian la geometría hiperbólica. La geometría elíptica fue desarrollada más tarde por el matemático alemán Bernhard Riemann, quien también introduce el concepto de variedad (matemática) (y la hoy llamada Geometría de Riemann).

Siglo XX
En el siglo XX ve a las matemáticas convertirse en una profesión mayor. Cada año, se gradúan miles de doctores, y las salidas laborales se encuentran tanto en la enseñanza como en la industria. Los tres grandes teoremas dominantes son: los teoremas de incompletitud de Godel, la demostración de la conjetura de Taniyama-Shimura, que implica la demostración del ultimo teorema de Fermat; la demostración de las conjeturas de Weil por Pierre Deligne.
La geometría diferencial se convirtió en objeto de estudio como tal cuando Einstein la utiliza en la relatividad general. Áreas enteramente nuevas de la matemática como la lógica matemática, la topología y la teoría de juegos de John von Neumann, cambian el tipo de preguntas a las cuales se podía dar respuesta con métodos matemáticos. Todo tipo de estructura fue reducido a un grupo de axiomas abstracto, y se les dio nombres como espacio métrico, espacio topológico, etc. Estos conceptos, a su vez fueron abstraídos hacia una teoría de categorías, como se suele ser el caso en matemáticas. Grothendieck y Serre relanzan la geometría algebraica utilizando teoría de haces. Grandes avances fueron hechos en el estudio cualitativo de la teoría de sistemas dinámicos que Poincaré había comenzado en los 1890's. La teoría de la medida fue desarrollada en los tardíos 1900´s y comienzos del siglo XX. Las aplicaciones de la medida incluyen la integral de Lebesgue, la axiomatización de Kolmogorov de la teoría de la probabilidad, y la teoría ergódica. La teoría de nudos también se amplió. La mecánica cuántica llevó al desarrollo del análisis funcional.

Siglo XXI
En el año 2000, el Clay Mathematics Institute anunció los siete problemas del milenio, y en 2003 la demostración de la conjetura de Poincaré fue resuelta por Grigori Perelmán (que declinó aceptar el premio).

¿PARA QUÉ SIRVEN LAS MATEMATICAS?